metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Salim F. Haddad,^a* Murad A. AlDamen,^a Roger D. Willett^b and Brendan Twamley^c

^aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, ^bDepartment of Chemistry, Washington State University, Pullman, WA 99164, USA, and ^cUniversity Research Office, University of Idaho, Moscow, ID 83844, USA

Correspondence e-mail: haddadsalim@hotmail.com

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.008 Å R factor = 0.028 wR factor = 0.075 Data-to-parameter ratio = 19.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

A copper(I) iodide chain with the 2-amino-4,6-dimethylpyridine cation

In the title compound, (2-amino-4,6-dimethylpyridinium) diiodocuprate(I), $(C_7H_{11}N_2)[CuI_2]$, the planar 2-amino-4,6-dimethylpyridine species is protonated at the pyridine N atom. It interacts with the inorganic chains by extensive hydrogen bonding. The cation forms $N-H\cdots$ I hydrogen bonds from both its pyridine and amine N atoms. The copper(I) species is tetrahedrally bonded to four iodide ions (average Cu-I distance = 2.665 Å, with a standard uncertainty of 0.019 Å) and forms infinite edge-sharing chains. Atom-site symmetries: Cu (2); I, phenyl-C and N (*m*).

Comment

The use of pyridine derivates as templating agents for the selfassembly of organic–inorganic supramolecular materials has been widely studied (Matsumoto, 2003; Desiraju, 1995, 2001; Aakeröy *et al.*, 2000; Mitzi, 2001; Bond & Parsons, 2002). Recently, the structure of 4-dimethylaminopyridinium tribromocuprate(I) was reported; it contains discrete cations and anions (Haddad & Willett, 2001). Copper(I) bromide was also found to form chains with 2,6-diaminopyridinium as a cation (Liu *et al.*, 2001). Copper(II) bromide also forms chains in a complex with pyrazine (Fetzer *et al.*, 1989).

As part of studies on the lattice reduction of copper halides by organic amine cations to chains (Haddad *et al.*, 2003) and to sheets (Desiraju, 1995), we have prepared and characterized the title compound, (I). This proved to contain tetrahedral chains of stoichiometry $[CuI_2]^-$ separated by the organic 2-amino-4,6-dimethylpyridinium cations.

The cation in (I) is required to be planar since all atoms, except two H atoms of each methyl group related by reflection, lie on the *ac* mirror plane perpendicular to the *b* axis. (Fig. 1). The anionic chain consists of copper(I) bridged by two independent iodide ions. The Cu occupies a (0, y, 0) site with twofold symmetry, while I1 and I2 fall on mirror planes perpendicular to the *b* axis at y = 0.5 and y = 0, respectively. The coordination of copper(I) is distorted tetrahedral. The dihedral angle between the planes of the bridging moieties is 85.46 (3)° (Fig. 1).

Molecular orbital calculations (Avdeef & Fackler, 1978; Mehrotra & Hoffmann, 1978) show that there is no evidence for a metal-metal bond between two Cu atoms. This is due to Received 13 November 2003 Accepted 2 December 2003 Online 19 December 2003

the bond distances and angles between Cu and I atoms (Table 1).

There are neither π - π stacking nor I···I interactions of any significance in (I); the closest distance between iodine atoms in different chains is 9.643 (2) Å.

Cations are sandwiched between inorganic chains that run along the b axis (Fig. 2). The cations lie in the ac plane and form N-H···I hydrogen bonds to the chains with similar geometrical parameters to those reported by Garden et al. (2002) and Freytag et al. (1999).

Experimental

0.5 mmol of CuI was added to 25 ml of 95% ethanol and the solution was heated gently for 10 min, The CuI did not dissolve well. 5 ml of concentrated HI was added, followed by 1 mmol of 2-amino-4,6-dimethylpyridine (99%). A yellow-brown solution formed and crystals developed upon slight cooling. They were collected then recystallized upon cooling from 95% hot ethanol. Large elongated transparent colorless plates developed. Two crops were collected on a frit but were not washed.

Crystal data

$(C_7H_{11}N_2)[CuI_2]$	$D_x = 2.509 \text{ Mg m}^{-3}$
$M_r = 440.52$	Mo $K\alpha$ radiation
Monoclinic, C2/m	Cell parameters from 4476
a = 19.003 (4) Å	reflections
b = 6.7188 (13) Å	$\theta = 2.2 - 30.0^{\circ}$
c = 9.2156 (18) Å	$\mu = 7.16 \text{ mm}^{-1}$
$\beta = 99.37 (3)^{\circ}$	T = 296 (2) K
V = 1160.9 (4) Å ³	Plate, colorless
Z = 4	$0.44\times0.31\times0.05~\mathrm{mm}$
Data collection	
Bruker/Siemens SMART APEX	1434 independent reflections
CCD diffractometer	1316 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.029$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -24 \rightarrow 24$
$T_{\min} = 0.070, \ T_{\max} = 0.697$	$k = -8 \rightarrow 8$

 $l = -11 \rightarrow 11$

Figure 2

Packing diagram of (I), showing the extensive hydrogen bonding between the CuI_2^- chains and 2-amino-4,6-dimethylpyridine cations. [Symmetry codes: (i) -x, 1 - y, -z; (iii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z; (iv) $\frac{1}{2} + x$, $y - \frac{1}{2}$, z.] Displacement ellipsoids are drawn at the 30% probability level.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0385P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 1.2949P]
$wR(F^2) = 0.075$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
1434 reflections	$\Delta \rho_{\rm max} = 1.08 \ {\rm e} \ {\rm \AA}^{-3}$
72 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu-I1	2.6482 (7)	$Cu \cdot \cdot \cdot Cu^i$	3.2437 (17)
Cu-I2	2.6821 (8)	$Cu{\cdots}Cu^{ii}$	3.4751 (17)
$I1-Cu-I1^{i}$	104 47 (3)	$I2^{ii}$ -Cu-I2	99.24 (3)
$I1 - Cu - I2^{ii}$	116.387 (17)	Cu-I1-Cu ⁱ	75.53 (3)
I1-Cu-I2	110.431 (19)	Cu ⁱⁱ -I2-Cu	80.76 (3)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···I2 ⁱⁱⁱ	0.86	2.96	3.753 (5)	155
$N2-H2B\cdots I1^{i}$	0.86	2.74	3.599 (5)	174
$N2-H2A\cdots I2^{iii}$	0.86	2.78	3.611 (6)	162

Symmetry codes: (i) -x, 1 - y, -z; (iii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z.

H atoms, other than methyl H atoms, were positioned geometrically and refined with a riding model, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atom. Methyl atoms H6A and H7A were positioned with y =0.5The other two H atoms in the asymmetric unit, H6B and H7B, were positioned to give ideal tetrahedral geometry for the methyl groups across the mirror plan. The largest residual electron-density peak lies 0.92 Å from the atom I1.

7083 measured reflections

metal-organic papers

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1996); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Aakeröy, C. B., Beatty, A. M., Leinen, D. S. & Lorimer, K. R. (2000). Chem. Commun. pp. 935–936.
- Avdeef, A. & Fackler, J. P. (1978). Inorg. Chem. 17, 2182-2187.
- Bond, A. D. & Parsons, S. (2002). Acta Cryst. E58, 0550-0552.
- Bruker (1996). *SMART* (Version 5.626), *SAINT-Plus* (Version 6.22) and *SADABS* (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). *SHELXTL* (including *XPREP*, *XCIF*, *XL*, *XP*, *XS*). Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
- Desiraju, G. R. (2001). Curr. Sci. 81, 1038-1055.
- Fetzer, Th., Lentz, A. & Debaerdemaeker, T. (1989). Z. Naturforsch. Teil B, 44, 553–556.
- Freytag, M., Jones, P. G., Ahrens, B. & Fischer, A. K. (1999). New J. Chem. 23, 1137–1139.
- Garden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002), *Acta Cryst.* B58, 701–709.
- Haddad, S. F., Willett, R. D. & Awadi, F. (2003). Cryst. Growth Des. 3, 501-505.
- Haddad, S. & Willett, R. D. (2001). J. Chem. Crystallogr. 31, 37-41.
- Liu, S. H., Chen, J. D., Liou, L. S. & Wang, J. C. (2001). *Inorg. Chem.* **40**, 6499–6501.
- Matsumoto, A. (2003). Polym. J. 35, 93-121.
- Mehrotra, P. & Hoffmann, R. (1978). Inorg. Chem. 17, 2187-2189.
- Mitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1-12.